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Introduction

ing domains.

* Deep learning (DL) is particularly successtul here:

—large data sets, multivariate input and /or ouput,

. —highly complex sequences of interactions.
" e Model interpretability:

— Ability to understand a model’s decisions in a given context [1].
—Techniques typically not originally developed for time series data.
—Time series interpretations themselves become uninterpretable.

e Knowledge Discovery:

— DL has potential to reveal interesting patterns in large data sets.
— Potential to produce novel insights about the task itself [2, 3].

* ‘know-it": Collaborative project that studies knowledge discovery in
time series data.
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e Complex time series data often encountered in scientific and engineer-

' ® Develop a platform that simplifies:
. _the development of time series models,

—interpreting these models,

—interpreting the explanations.
* Probe the limitations of current interpretability techniques when ap-

plied to time series data, specifically.

* Apply to selected applications.
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Figure 1: Main modules

* Both existing time series architectures (ICNs, RNNs, LSTMs,
temporal transformers) and ability to import own architecture.

* Feature attribution focus currently on SHAP variations [4].

* Not as forecasting-focused (autoregressive) as related projects.

e Summarisation and visualisation still limited.

Synthetic Testbench

. ® Create time series data with known relationships.

* Testbench generates the data set.

e User uses know-it or external system to construct accurate model and
extract explanations.

* Testbench evaluates explanations against known ground truth.

Synthetic Data

- ® Synthetic data should reflect real-world time series data.
e User configurable:

—generating function: specifies underlying feature distributions,
—underlying co-variances among input parameters,
— transfer function: transforms input to output,

—time dependencies between parameters.

Applications

e Environmental monitoring: Penguin prey capture events from bird-
borne data loggers.

Figure 2: Accelerometer data logged by chinstrap penguins. Video
confirmation used to train models in a supervised fashion.

* Microbial ecology: Modeling population dynamics of the wine yeast
community through time, where yeast-yeast interactions affect fer-
mentation outcomes.
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Figure 3: Microscopic images of distinctively labelled yeast species inter-
- acting in a constrained growth medium.

e Space weather tracking: Geomagnetic index prediction from solar
wind data. o
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Figure 4: Predicting the effect of a solar storm on Earth’s geomagnetic field.
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